Intrinsic Diophantine approximation on quadric hypersurfaces

نویسندگان

چکیده

We consider the question of how well points in a quadric hypersurface ${M\\subseteq\\mathbb{R}^d}$ can be approximated by rational ${\\mathbb{Q}^d\\cap M}$. This contrasts with more common setup approximating manifold all ${\\mathbb{Q}^d}$. provide complete answers to major questions Diophantine approximation this context. Of particular interest are impact real and ranks defining quadratic form, quantities whose roles have never been previously elucidated. Our methods include correspondence between intrinsic theory on dynamics group projective transformations which preserve that hypersurface, similar earlier results non-intrinsic setting due Dani (1986) Kleinbock–Margulis (1999).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation by Algebraic Hypersurfaces and Varieties

Questions on rational approximations to a real number can be generalized in two directions. On the one hand, we may ask about “approximation” to a point in Rn by hyperplanes defined over the rationals. That is, we seek hyperplanes with small distance from the given point. On the other hand, following Wirsing, we may ask about approximation to a real number by real algebraic numbers of degree at...

متن کامل

Intrinsic Diophantine Approximation on Manifolds: General Theory

We investigate the question of how well points on a nondegenerate k-dimensional submanifold M ⊆ Rd can be approximated by rationals also lying on M , establishing an upper bound on the “intrinsic Dirichlet exponent” for M . We show that relative to this exponent, the set of badly intrinsically approximable points is of full dimension and the set of very well intrinsically approximable points is...

متن کامل

Diophantine Approximation on Veech

— We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an ...

متن کامل

Rational Points on Intersections of Cubic and Quadric Hypersurfaces

We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2021

ISSN: ['1435-9855', '1435-9863']

DOI: https://doi.org/10.4171/jems/1128